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Abstract

In this paper a parametric study of shear stressed masonry panels has been carried out both by means of micro- and

macro-finite element modelling. Within the framework of continuum damage mechanics, two different damage models

have been used: the isotropic model to simulate the behaviour of mortar in the micro-modelling approach; the

orthotropic model to reproduce the non-linear behaviour of masonry in the macro-modelling. The first approach allows

to accurately capture the local response of panels under shear loading, e.g. the effect of the texture (namely stack bond

or running bond) and of an applied external precompression. Moreover, the micro-modelling analyses could be applied

to determine the parameters necessary to calibrate the macro-model, in view of a possible use of the micro-modelling

technique as a complement to or in total alternative of experimental tests. Finally the macro-model has been applied to

simulate the shear tests on masonry panels proving to be able to reproduce the global behaviour of masonry.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

In many traditional structures the masonry walls play an important static role; besides withstanding

vertical compressive forces they usually have to carry in-plane horizontal loads (induced e.g. by wind and

earthquake, and transferred to the walls primarily via diaphragms such as floors or roofs).

Consequently the shear behaviour, as well as the failure modes of shear stressed masonry panels have

been subject of many investigations during the years in a number of countries.

The present work aims to analyse the masonry structural behaviour within the framework of the con-
tinuum damage mechanic in order to take into account the non-linear constitutive law of the material. In

particular, two different damage models have been used according to the two different approaches, which

have been followed: the micro- and the macro-modelling.

Micro-modelling is probably the best tool available to analyse and understand the real behaviour of

masonry, particularly concerning its local response. Within such an approach is possible to characterise
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separately mortar, blocks and their interfaces, adopting suitable constitutive laws for each component,

which take into account their different mechanical behaviour (Page, 1978; Ali and Page, 1988; Lofti and

Shing, 1994; Lourenc�o, 1996; Zucchini and Lourenc�o, 2002; Gambarotta et al., 1995). Such a modelling
procedure leads to very accurate results, but requires an intensive computational effort. To overcome this
problem, Tzamtzis (1994) and Sutcliffe et al. (2001) have recently proposed a simplified micro-modelling

procedure which is an intermediate approach, where the properties of mortar and the unit/mortar interface

are clamped into a common element, while expanded elements are used to represent the brick units.

In the following the micro-modelling has been used to investigate the local response of shear loaded

masonry panels, in particular to accurately capture the effect of the texture (namely stack bond or running

bond) and of an applied external precompression.

First a simple linear analysis is performed and the numerical results for the stack bond and running bond

masonry are compared with those obtained by applying the explicit formulae developed by Cecchi and Sab
(2002) within the homogenization theory approach. Subsequently the same numerical tests are carried out

by considering a non-linear behaviour of masonry; in such analyses the effect of an external applied pre-

compression is investigated too.

In all the analyses the bricks are modelled by adopting a linear elastic constitutive law, whereas the non-

linear behaviour of the mortar is reproduced by an isotropic damage model (Saetta et al., 1999). In such a

way the damage evolution in the mortar joints can be accurately followed and the real stress distribution

can be determined.

As any micro-modelling analysis, the high level of refinement required for obtaining accurate results,
means an intensive computational effort (i.e. great number of degrees of freedom of the numerical model),

which limits its applicability to the analysis of small elements (e.g. small laboratory specimens) or, at least,

to small part structural details (e.g. Sutcliffe et al., 2001; Asteris and Tzamtzis, 2003).

When large real structures have to be studied, a different approach is needed. In particular the macro-

models constitute an effective method to analyse the global response of masonry structures.

In such an approach, masonry is regarded as an equivalent material, where mortar and blocks are melted

together, and appropriate relations are established between averaged masonry strains and averaged ma-

sonry stresses.
A number of such models have been developed (e.g. Papa and Nappi, 1996; Callerio and Papa, 1998;

Zhuge et al., 1998; Syrmakezis and Asteris, 2001; Andreaus, 1996 etc.). Among them Lourenc�o (1996) has
proposed a non-linear constitutive model for in-plane loaded walls based on the plasticity theory. More

recently Massart et al. (2001) have developed an interesting two-dimensional anisotropic damage model in

a ‘‘multiplane’’ framework, even if, to the knowledge of the authors, up to now no one practical application

has been made.

In this work the orthotropic damage model developed by the authors (Berto et al., 2002) is adopted,

where masonry is considered as an orthotropic composite with different elastic and inelastic properties
along the two main directions. In order to apply this model, a preliminary calibration of the material

parameters is requested.

Such a calibration can be performed in different ways: (i) from a suitable set of experimental tests on full

scale masonry panels, or (ii) by considering masonry as a composite material, with the preliminary

experimental assessment of the behaviour of its components (brick and mortar) as input data for the

following use of a homogenization technique or of the previously mentioned micro-modelling approach.

At the actual stage of the scientific cognition, the homogenization techniques can be profitably used only

in the elastic field. Whereas the using of the micro-modelling technique allows a fully characterisation of the
macro-model, as it will be shown in this work, taking into account the effect of the texture and precom-

pression, both in the elastic and post-elastic field.

As final issue, it will be demonstrated the ability of the macro-model of reproducing the shear behaviour,

as well as the failure modes of shear stressed masonry panels in terms of ‘‘global response’’.



L. Berto et al. / International Journal of Solids and Structures 41 (2004) 4383–4405 4385
The first part of the paper is devoted to a brief review of the two adopted damage models with a val-

idation example of the orthotropic model.

The second part is specifically devoted to the study of the shear behaviour of masonry by varying the

texture and the precompression level. In this analysis we are limiting our attention on masonry charac-
terised by blocks much stiffer than the mortar, which is a rather usual case in our country especially for

historical masonry. Moreover only two kind of pattern bond will be analyzed, namely the running and the

stack bond masonry and no attention will be given to the other kind (e.g. American Bond, Flemish Bond,

English Bond,. . .).
It is worth noting that the running bond masonry is much more common, while the stack bond is less

frequent (it is sometimes used for large cross section column). However we have chosen to compare these

two textures in order to better understand the importance of the pattern bond in characterising the shear

behaviour of masonry, and in particular to investigate the difference between one ‘‘good masonry’’ (running
bond) and one ‘‘bad’’ (stack bond).
2. Damage model: basic assumptions

In this section a brief recall of the two continuum damage models––the isotropic model and the

orthotropic one––developed by the authors and adopted in the following analyses is presented.

According to the strain-based formulation (Simo and Ju, 1987), the state of damage can be characterised
by a fourth-order tensor M, which allows to transform the Cauchy stress tensor r into the effective stress

tensor �r (or vice versa) as follows:
�r ¼ M�1 : r ð1Þ

where M is generally related to the fourth-order damage tensor bD by means of:
M ¼ ½I� bD� ð2Þ

For the isotropic one-parameter damage case, relation (1) collapses to
�r ¼ r

ð1� dÞ ð3Þ
where d is the scalar variable describing the state of damage.

2.1. Isotropic damage model

The isotropic damage model we have used in the following micro-analyses, considers two independent

internal damage variables––dþ for the tensile stresses, d� for the compressive ones––in order to take into

account the different non-linear behaviour of the material under tensile or compressive loading, as well the

crack closure effect upon loading reversal. With such an assumption, the effective stress tensor is split into

two components �rþ
ij and �r�

ij , related respectively to dþ and d�, and Eq. (3) is replaced by the following

(Farja and Oliver, 1998):
rij ¼ ð1� dþÞ�rþ
ij þ ð1� d�Þ�r�

ij ð4Þ
Correspondingly, two equivalent effective tensile and compressive stresses �sþ and �s� are introduced, on which
the damage evolution laws are depending (e.g. Farja and Oliver, 1998; Saetta et al., 1999), according to
dþ ¼ 1� rþ0
�sþ

� exp Aþ � 1

  
� �sþ

rþ0

!!
ð5Þ
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d� ¼ 1� r�0
�s�

� ð1� A�Þ � A� � exp B� � 1

 "
� �s�

r�0

!#
ð6Þ
where rþ0 , r
�
0 are the current damage thresholds which control the size of the expanding damage surfaces.

These equations reproduce respectively the softening branch of the brittle material under unidimensional

tensile test and both the hardening effect of material under compression and the softening after the com-

pressive strength achieving. The detailed description of the parameters A�, B� and Aþ, depending on the
experimental data and in particular the last one on the fracture energy Gf , can be found in the previously
quoted papers.

The damage criterion adopted in this formulation is similar to the Drucker–Prager failure criterion in the

triaxial compression field, with a cap––closure in the tensile field. The damage function is merely the locus

of all points in the effective stress space separating the accessible from inaccessible states (Fonseka and

Krajcinovic, 1981).

Fig. 1 gives the constitutive curves r–e for both cases of uniaxial tension and compression.
Within the framework of such an approach, two global damage indexes can be defined, similarly to that

proposed by O~nate (1994). Such global damage indexes have been introduced by the authors (Saetta et al.,
1999) as an useful tool for monitoring the evolution of the non-linear response of a structure up to failure,

with reference both to the compressive and the tensile damaging processes:
D	� ¼
R
V d

�q0W
�
0 dVR

V q0W
�
0 dV

ð7Þ

D	þ ¼
R
V d

þq0W
þ
0 dVR

V q0W
þ
0 dV

ð8Þ
respectively, for compression and tension. They represent the weighted average of the internal damage

parameter on the whole structure, by using the elastic strain energy as weight. In particular Wþ
0 and W�

0 are

the Helmholtz free energy densities (per unit mass) associated to the positive and negative part of the

effective stress tensor and q0 is the mass density.

2.2. Orthotropic damage model

More recently, starting from the previously recalled two-parameters isotropic model, the authors have

developed a more sophisticated vectorial damage model, suitable for orthotropic brittle materials, like

masonry, under plane stress conditions, i.e. Berto et al. (2002).

The main assumption of this model is that the evolution of damage can modify the intensity of the

anisotropy of the material but does not alter its initial symmetries. This means that the initially orthotropic
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Fig. 1. Constitutive laws: (a) tension and (b) compression.
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material may not evolve into more general anisotropy after the onset of damage. This assumption, together

with the hypothesis of plane stress conditions, allows to simplify the theory by considering the damage

variables as scalars associated with the two principal axes of the material (x–y, that are respectively the bed
joint direction and the orthogonal one).
In particular, for each axis, two independent damage variables (one for tension, one for compression) are

defined in order to account for the crack closure effect, similar to the isotropic model above described. In

such a way four independent damage variables (dþ
x , d

�
x , d

þ
y and d�

y ) are introduced.

With these assumptions, the fourth-rank tensor M introduced in (1), as well as the damage tensor bD
whose elements are suitable functions of the damage variables and of the strain tensor, can be represented

by 3 · 3 matrix.
In order to define the evolution laws of the damage variables and the adopted damage criterion, four

independent equivalent elastic stresses �sþx �s�x �sþy �s�y (two for each natural direction of the material) have to be
actually introduced. They are linear combinations of the effective stresses (i.e. of the elastic strains).

At this stage of the research, the evolution laws of damage indexes are assumed similar to those proposed

by Farja and Oliver (1998) and Saetta et al. (1999) and provided in Eqs. (5) and (6).

To complete the definition of the damage model the damage criterion has to be defined. Since we are

dealing with an orthotropic material the damage surface cannot be defined in terms of principal stresses

only, as for the classical isotropic ones, but also their orientations with respect to the material axes have to

be kept into account. In this way, the damage surface can be expressed either in terms of (�r1, �r2, h) or of the
full effective stress vector (�rx, �ry and �sxy).
In this model the second representation has been chosen, since it is particularly appropriate for the

proposed approach. The shape of this surface is a double pyramid with rectangular base, for which the

slopes of the faces correspond to the internal friction angle of the material. In Fig. 2 the initial damage

surface adopted for the analysis of the stack bond masonry is shown in the positive space �sP 0.

It is worth noting to observe that the shape of the damage surface together with the adoption of four

independent damage variables allows to consider the biaxial problem as two uncoupled uniaxial problems
Fig. 2. Damage surface of the orthotropic damage model for the stack bond masonry in the space (�rx, �ry and �sxy) with �sxy P 0 (in MPa).
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(along the x and the y direction), each one with its own damage criteria (one for tension and one for
compression). In such a way no complications in the damage variables updating occurs at the singular

points of the damage surface.

Finally, in order to take into account the experimentally observed shear transmission capacity due to the
friction phenomena through an open crack, a residual shear satt has been introduced depending on the
existing level of compression and on a friction factor f , Berto et al. (2001):
satt ¼
jh�ðrx þ ryÞij

2
f ð9Þ
where the symbol h�i indicates the MacAuley brackets.
In such a way a minimum for the shear strength is assured even for a completely damaged material,

provided that the hydrostatic stress component be compression.
The detailed theories (with all the formulas and graphs) of the two formulations can been found in

(Saetta et al., 1999) and (Berto et al., 2002) respectively.
2.3. Numerical details and mesh dependency

Both models have been implemented in a novel computer code in FORTRAN programming language.

The dependence of the damage parameters (that is of the stiffness matrix) on the strain tensor (that is on

the displacement vector) leads to a solution of a system of non-linear equations. In these numerical

applications the modified Newthon–Raphson scheme, with the initial stiffness matrix in place of the

Jacobian matrix, is applied since it requires a reduced computational effort and assures a satisfactory

stability and accuracy to the numerical solution.

The mesh dependency associated to the strain softening in a local finite element formulation has been
partially overcome by adopting a simplified regularization approach. This method consists in linking the

specific fracture energy to the size of the mesh element (Saetta et al., 1999). By following such an approach,

the expression of the parameter Aþ, which appears in (5), is:
Aþ ¼ GfE0
lðeÞc ðftÞ2

 
� 1
2

!�1

ð10Þ
where Gf is the fracture energy of the material, E0 and ft are, respectively, its initial Young’s modulus and
its tensile strength and lðeÞc is a characteristic length depending on the size of every finite element used in the
FE mesh.

Since in this work only bi-dimensional cases are considered, the following expression for lðeÞc can be

adopted:
lðeÞc ¼
ffiffiffiffiffiffiffi
AðeÞ

p
ð11Þ
where AðeÞ is the element area.
2.4. Model validation

In the following the numerical analysis of a wall tested at ETH Zurich (Ganz and Thurlimann, 1984) will

be proposed to validate the orthotropic model. Other validation examples can be found in Berto et al.

(2002) and Berto et al. (2001). In particular good results had been found by simulating the experimental

tests on masonry panels subjected to shear and compression carried out by Calvi et al. (1992) at the
University of Pavia (Berto et al., 2002; Magenes and Calvi, 1997).
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As shown in Fig. 3, the tested wall consists of a masonry panel and two lateral flanges, at the top and

bottom of them are placed two concrete slabs. The wall has been firstly subjected to a vertical uniformly

distributed load p ¼ 1:91 MPa, in addition to the self weight, then a horizontal monotonically increased
force has been applied on the top slab under displacement control.
Table 1 shows the mechanical parameters used in the numerical analysis, they are derived from the

biaxial tests carried out from Ganz and Thurlimann (1982) and simulated by Lourenc�o (1996). The friction
factor has been assumed equal to 0.7. As made by Lourenc�o in his analysis, we have assumed for the flanges
in the x direction the tensile and compressive strength of the clay brick (ftx ¼ 0:68 MPa fcx ¼ 9:5 MPa). A
regular mesh, made up of linear triangular elements, has been used.

The numerical load versus displacement curve is plotted in Fig. 4. and compared with the experimental

one. A reasonably good agreement has been found.

Fig. 5 shows the damage contours for a displacement close to the experimental peak load (6.0 mm). It
can be seen that at this displacement level the wall shows a diffuse tensile damage distribution dþ

x , in quite

good agreement with the experimental crack pattern shown in Fig. 6, while the corresponding compressive

damage, although already visible, is sufficiently low with respect to its limit value. At collapse the damage

contours and the deformed configuration are shown, respectively, in Fig. 7 and Fig. 8. As evidenced by the
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Fig. 3. ETH Zurich shear wall: geometry and loads (in cm).

Table 1

ETH Zurich shear wall: material’s parameters for the macro-model

x direction y direction

Elastic modulus (MPa) Ex ¼ 2460 Ey ¼ 5460
Shear modulus (MPa) Gxy ¼ 1130
Poisson’s ratio mxy ¼ 0:18
Uniaxial elastic limit in compression (MPa) fcx0 ¼ 0:56 fcy0 ¼ 1:37
Uniaxial initial tensile strength (MPa) ftx ¼ 0:28 fty ¼ 0:05
Shear strength (MPa) fs ¼ 0:3
Fracture energy (N/mm) Gfx ¼ 0:02 Gfy ¼ 0:02
A parameter Acx ¼ 0:12 Acy ¼ 0:24
B parameter Bcx ¼ 1:0 Bcy ¼ 2:58
Friction factor f (MPa) f ¼ 0:7
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Fig. 5. Damage contours at the displacement of 6.0 mm.

Fig. 6. ETH Zurich shear panel: experimental crack patterns at the displacement of 6.0 mm.
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Fig. 7. Damage contours at the displacement of 8.0 mm (end stage).

Fig. 8. Deformed configuration at the displacement of 8.0 mm (end stage).
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significant development of compressive damage, the failure is dominated by masonry crushing in accor-

dance with the experimental evidence (Fig. 9).
Fig. 9. ETH Zurich shear panel: experimental crack patterns at the displacement of 8.0 mm (end stage).
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3. Effect of the texture on the shear behaviour of masonry panels

The aim of this first analysis is to capture and specifically understand the effect of the texture (that is

stack bond or running bond) on the shear behaviour of masonry panels (Fig. 10). In such a preliminary
analysis, a simplified mechanical model is adopted for which the blocks are modelled as rigid body and the

mortar as an elastic material.

This hypothesis, together with the assumption of a macroscopically homogeneous shear state and a

regular geometry, may refer this case to the Mann and M€uller’s theory (i.e. Mann and M€uller, 1982).
According to such an approach, the deformed configuration of the masonry panel is characterised by an

identical rigid rotation of all the bricks and a deformation of the mortar joints.

The mechanical response of the two kind of masonry can be interpreted as depicted in Fig. 11, where the

forces transmitted to a typical block by the surrounding mortar joints are evidenced (in the figure H and L
are, respectively, the height and the width of the block).

In the case of running bond masonry, the shear stresses in the head joints are lower than those in the bed

joints and the rotational equilibrium of the rigid block is ensured by the couples of the forces N (as

indicated in Fig. 11b) according to the balance equation:
Fig. 11

and (b
2N
L
2
þ TL ¼ sLH ð12Þ
Hence
N þ T ¼ sH ) T < sH ð13Þ
(a) (b)

Fig. 10. Shear test on a masonry panel: (a) stack bond masonry and (b) running bond masonry.
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. Schematic representation of the forces transmitted to a typical block by the surrounding mortar joints: (a) stack bond masonry

) running bond masonry.
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whereas for the stack bond masonry, for which the shear stresses in the head and in the bed joints are the

same, the balance equation leads to
Fig. 12
T ¼ sH ð14Þ

It follows that when the head joints are completely cracked, the running bond masonry will be still able to

withstand shear stresses and its shear modulus won’t vanish unlike the stack bond masonry, for which the

shear stresses in the head joints are essential to the rotational equilibrium.

The relevance of such a consideration is emphasised by the fact that, in real masonry structures, the

vertical mortar joints are usually not well filled and that they are usually cracked because of the shrinkage.

Therefore all the methods developed to analyse the real response of masonry panel under shear loading

condition should consider the effect of the damage in the mortar joint, at least in term of reduction of
mechanical properties. The proposed analyses are aimed to give a contribution to the understanding and

the effective representing of such a phenomenon, as well as to evaluate the effect of an applied vertical

precompression to the panel.

Actually an initial prestressing improves the carrying behaviour by enhancing the friction force on the

bed joints. According to the Coulomb’s criterion, the shear strength increases as the axial compression ratio

increases, and the correlated curve of combined shear compression stresses is uniformly ascending.
4. Numerical modelling

4.1. Micro-modelling

Following the micro-modelling approach, a first set of numerical analyses has been carried out with the

aim of accurately capturing the local response of the masonry panels depicted in Fig. 10, under shear

loading conditions: e.g. the effect of the texture (namely stack bond or running bond) and of an applied

external precompression, as well as of following the evolution of damage growth in the mortar joints.

The parallel goals to obtain an effective simulation and to reduce as much as possible the computational

complexity of the analyses, have led to consider only the central part of the panels (dashed in Fig. 10) by

imposing appropriate boundary conditions. All the analyses are performed in plane stress hypothesis and

under a displacement-controlled shear test.
The adopted mesh is depicted in Fig. 12 for both cases of stack and running bond masonry. Almost 1500

three-noded triangular elements are used.

The aim of the following analyses is to simulate the state of the panels, made by bricks geometrically

identical and much stiffer than mortar, with a macroscopically homogeneous stress–strain shear state (i.e.

Mann and M€uller, 1982). Therefore the boundary conditions of the selected finite element meshes have to
. Mesh adopted and imposed boundary conditions for the FE analysis: (a) stack bond masonry and (b) running bond masonry.
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be imposed in such a way that all the blocks show the same rigid rotation. In the same Fig. 12 the constraint

conditions and the imposed horizontal displacements used to simulate such a shear state are represented.

The brick dimensions are 250 · 120 · 125 mm3 (length · height ·width) and the mortar thickness equals
10 mm.
For the units, a rigid model has been assumed, whereas for the mortar two different constitutive laws

have been used: a linear elastic behaviour and a non-linear behaviour (Fig. 13) derived by the above-

mentioned isotropic damage model. The parameters used to characterise the mortar material are sum-

marised in Table 2.

For each type of texture the following numerical tests have been carried out:

• Shear test without an initial applied precompression by assuming a linear elastic behaviour for the mor-

tar.
• Shear test without an initial applied precompression by assuming a non-linear elastic behaviour for the

mortar.

• Shear test with an initial applied precompression ry ¼ 1 MPa by assuming a non-linear elastic behaviour
for the mortar.

• Shear test with an initial applied precompression ry ¼ 2 MPa by assuming a non-linear elastic behaviour
for the mortar.

4.1.1. Linear elastic analysis: comparison with the homogenization approach

The numerical results in terms of stresses due to a shear strain c ¼ 1� 10�4, which rise in the mortar
joints surrounding the central unit are represented in Figs. 14 and 15, respectively, for the stack and the

running bond panel.
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Table 2

Mortar parameters for the elastic and isotropic damage model

Elastic modulus E ¼ 2000 MPa
Poisson’s ratio m ¼ 0:3
Uniaxial elastic limit in compression fc ¼ 5:0 MPa
Uniaxial initial tensile strength ft ¼ 0:1 MPa
Fracture energy Gf ¼ 0:00015 N/mm
A� parameter A� ¼ 0:8
B� parameter B� ¼ 2:3
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As expected (see Section 3), in the case of stack bond the shear stresses are almost the same in the vertical

joints and in the horizontal ones (0.6 versus 0.75 MPa). This slight difference can be ascribed to the fact that

the applied numerical boundary conditions are not able to generate exactly the same rigid rotation to all the

bricks, as can be noted by carefully looking at the deformed meshes (Fig. 16a). The unequal blocks

rotations produce a triangularly distributed normal stresses, especially in the bed joints, whose contribution
in the rotation equilibrium of the brick is only about 15% of the couple generated by the shear stresses.

Therefore such an approximation does not dissimulate the ability of the model in describing the peculiar

behaviour of the stack bond texture.

On the other hand, in the case of the running bond, the shear stresses are much lower in the head joints

than in the bed ones (respectively, 0.33 and 0.85 MPa). Consequently not negligible normal stresses ry occur

in the bed joints, inducing two significant couples of forces that ensure the rotational equilibrium of the

rigid block. In particular, the moment of the couple in this case is four times as high as the one generated in

the case of stack bond.
For each case a shear moduli Gxy can be evaluated as an overall parameter of the masonry panels. Such

values can be compared with those obtained by applying the analytical formulae derived by Cecchi and Sab

(2002) within the homogenization theory. They have provided an analytical expression of the homogenized

stiffness tensor for stack and running masonry both for plane stress and for plane strain conditions in the

hypothesis of small ratio of the mortar Young’s modulus and the block Young’s modulus and for small

ratio of the joint thickness and block dimensions. By adopting these expressions in the stress plane con-

dition in the hypothesis of infinitely stiff units, and assuming the elastic and the geometrical characteristics

of the mortar joints and the blocks, the homogenized shear moduli for the two types of masonry has been
obtained.
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Fig. 15. Running bond panel––diagram of the stresses in the mortar joints surrounding the central block for c ¼ 1 � 10�4.

Fig. 16. Deformed mesh: (a) stack bond masonry and (b) running bond masonry.

4396 L. Berto et al. / International Journal of Solids and Structures 41 (2004) 4383–4405
The comparison between the results is proposed in Table 3, where the last column shows the percentage

error e of the finite element solution with respect to the homogenization solution. As expected, the FE
solutions reveal to be stiffer than the homogenization one; nevertheless the comparison is quite good

especially for the running bond masonry.

4.1.2. Non-linear analysis––isotropic damage approach

In order to carry out some more information about the real shear behaviour of the masonry panels after

the elastic range, the same tests have been repeated by assuming a non-linear constitutive law of the mortar
via the isotropic damage approach. Within such an approach, the tensile strength of the mortar is assumed



Table 3

Comparison between the shear modulus derived from the homogenization theory and the FE linear elastic analysis

Homogenization (MPa) FE linear elastic analysis (MPa) Percentual error (%)

Stack bond masonry G ¼ 6235 G ¼ 7820 20

Running bond masonry G ¼ 7735 G ¼ 8615 10
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very low, so causing, as expected, a completely different stress distribution with respect to that obtained in
the linear elastic hypothesis.

Fig. 17 shows the mechanical responses of the two masonry panels in terms of damage contours plotted

for the same shear strain (c ¼ 3� 10�5), next to the start of the inelastic behaviour. The effect of the dif-
ferent masonry texture is clearly evidenced: although the tensile damage starts to develop along the bed

joints for both cases, the followed pattern is rather different. In the stack bond masonry, the tensile damage

spreads along the bed joints almost instantly, then quickly along the head ones; whereas, in the running

bond masonry, the damage at first affects the half part of the joints undergoing tensile stress and just after

spreads along the whole mortar plane and then along the vertical joints.
The damage evolution can significantly change if an initial vertical precompression ry is applied to the

panel. Actually, due to the vertical compression, for both the textures, the tensile damage firstly affects the

head joints and only for high shear strain spreads to the horizontal ones.

Two different levels of precompression have been applied, respectively, ry ¼ 1 MPa and ry ¼ 2 MPa.
Figs. 18 and 19 show the damage contours for both study cases, plotted for a shear strain corresponding

to an initial state of damage. It can be observed the well-known positive effect of an applied precom-

pression, which for both the typologies of masonry leads to an expansion of the linear elastic range, even if

with a different mechanism.
These observations are also legible in Fig. 20, where the global damage index is plotted versus the shear

deformation c. In such diagrams we can observe the shift of the tensile damage onset as the applied
prestressing increases, particularly for the running bond masonry, whereas the compressive damage, which

occurs firstly for the running bond masonry, shifts in the opposite side.
Fig. 17. Damage contours for c ¼ 3� 10�5 without precompression: (a) stack bond masonry and (b) running bond masonry.

Fig. 18. Damage contours for c ¼ 6� 10�5 with a precompression ry ¼ 1 MPa: (a) stack bond masonry and (b) running bond ma-
sonry.



Fig. 19. Damage contours for c ¼ 1:1� 10�4 with a precompression ry ¼ 2 MPa: (a) stack bond masonry and (b) running bond
masonry.
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Finally in Figs. 21 and 22 the results in terms of s–c and ry–c curves are given, respectively, for stack
bond and running bond masonry. Some consideration and discussion will be proposed in the next section.

4.1.3. Discussion and remarks

Since we are dealing with displacement-controlled shear tests, as soon as the non-linear range is reached,

the plain shear state (i.e. ex, ey ¼ 0 and rx, ry ¼ 0) is no more a maintainable state.
Actually, as the imposed displacements assigned to the central point of the units increases, we observe an

increasing damage in the mortar joints, which causes an increasing compression state, as demonstrated by

the diagrams of Fig. 21b and Fig. 22b. In other words, after the damage onset, the increasing shear strain
involves increasing vertical forces in the centres of the upper and lower blocks, in order to respect the
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equilibrium and continuity conditions, and therefore the ideal condition of the pure shear stress state ry ¼ 0
is not more respected.
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The same phenomenon occurs also in the non-linear analyses with an applied precompression. Therefore

we have to refer to an ‘‘initial’’ or ‘‘nominal’’ precompression, since the real one goes up with the increasing

of the damage.

With such a remark in mind, a comparison between the graphs drawn in Figs. 21(a) and 22(a) can now
be made. In particular, the above-mentioned increasing internal compression justifies the same response

that all the samples show for high shear strain, independently from the type of texture and the ‘‘initial’’

precompression level. Therefore the more significant results can be found in the initial parts of the graphs.
4.2. Macro-modelling

The second part of this paper is devoted to evaluate the effectiveness and potentiality of macro-modelling
approach to treat the shear response of masonry panels. The main concern is to prove the capability of the

orthotropic macro-model, which has been described in Section 2.2, to properly capture the global response

of the shear stressed masonry panels, with a reduced computational effort.

To this aim a single four-noded finite element has been used to represent the same panels that had been

studied in the previous section, e.g. Fig. 12. The orthotropic damage model is applied to each loading

condition previously investigated with the micro-model approach.

The first step required to perform such analyses is the evaluation of all the mechanical parameters used

by macro-model.
4.2.1. Orthotropic damage model calibration

Some preliminary considerations are needed to better illustrate the procedure used to evaluate the

mechanical parameters necessary to apply the orthotropic damage model described in Section 2.2, starting

from the results obtained with micro-modelling tests.

The macro-model, in its original formulation, needs four linear elastic parameters (Ex, Ey , Gxy , mxy), and
eleven non-linear parameters (ftx, fty , fcx0, fcy0, fs; Gfx, Gfy , A�

x , B
�
x , A

�
y , B

�
y ).

The first group characterises the elastic behaviour of the orthotropic material in plane stress condition:

respectively, the Young’s moduli Ex, Ey along the two natural directions, the shear modulus Gxy and one

Poisson’s ratio mxy (the other one, i.e. myx, can be derived from the relation mxy=Ex ¼ myx=Ey).

The second group refers to the strength and the non-linear behaviour of the material. Such parameters

are respectively: the uniaxial tensile strengths ftx, fty and the uniaxial compressive linear thresholds fcx0, fcy0
along the material axes; the shear strength fs; the last six parameters characterise the shape of the non-linear

part of the constitutive curve along the two directions, both in tensile field (i.e. the fracture energies Gfx, Gfy)
and in the compressive one (i.e. the parameters A�

x , B
�
x , A

�
y , B

�
y ). All these parameters can be evaluated by

performing the five tests schematically drawn in Fig. 23 under displacement controlled conditions.

The last parameter to be defined is the friction factor f , i.e. Eq. (9), for which one additional test has to
be performed accounting for the contemporary presence of compression and shear.
(a) (b) (c) (d) (e)

Fig. 23. Tests to calibrate the orthotropic damage model: (a) uniaxial tension parallel to the bed joints; (b) uniaxial tension normal to

the bed joints; (c) uniaxial compression parallel to the bed joints; (d) uniaxial compression normal to the bed joints and (e) shear test.
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Such tests can be carried out both via experimental as well as numerical way. However, since it is usually

easier to get experimental data on the single components (i.e. mortar and bricks) than on a masonry panel,

the numerical simulation is the more appealing technique. In particular two different approaches can be

applied: homogenization techniques (useful to evaluate the elastic properties) and micro-modelling simu-
lations, both based on the mechanical characteristics of the constituent materials.

In the present work, the latter procedure has been adopted and the mechanical parameters of the macro-

model have been obtained by using the results of the previously described micro-modelling tests.
4.2.2. Comparison between the results of micro- and macro-modelling

Four additional numerical simulations have been carried out on both the masonry panels we have

analysed in Section 4.1 (i.e. the running bond and the stack bond masonry): two uniaxial compressive tests

and two uniaxial tensile tests, along the two material axes. The results have been summarised in Fig. 24 in

terms of r � e curves that have allowed to evaluate 13 of the material parameters requested by the macro-
model, that is Ex, Ey , mxy , ftx, fty , fcx0, fcy0, Gfx, Gfy , A�

x , B
�
x , A

�
y , B

�
y .

For what concerns the shear behaviour of masonry (i.e. the estimation of the shear modulus Gxy , the

shear strength fs, and the friction factor f ) the tests developed in the previous section have been considered.
The simulation of these tests by using the single four-noded finite element has led to the estimation of all

the macro-model properties, which are summarised in Tables 4 and 5, respectively, for the stack bond

masonry and for the running bond masonry.

It is worth noting how the different texture reflects on different global behaviour of the panels and

consequently on different values of macro-model properties, especially along the x-direction for which no
interlock is active.
-7

-6

-5

-4

-3

-2

-1

0

-0.05% -0.04% -0.03% -0.02% -0.01% 0.00%
ε

σ
(M

P
a)

running bond

stack bond
-7

-6

-5

-4

-3

-2

-1

0

-0.05% -0.04% -0.03% -0.02% -0.01% 0.00%
ε

σ
(M

P
a)

running bond

stack bond

0
0.02
0.04
0.06

0.08
0.1

0.12

0.0E+00 2.0E-06 4.0E-06 6.0E-06 8.0E-06 1.0E-05

ε

σ
(M

P
a)

running bond
stack bond

0
0.02

0.04
0.06

0.08
0.1

0.12

0.0E+00 2.0E-06 4.0E-06 6.0E-06 8.0E-06 1.0E-05

ε

σ
(M

Pa
)

running bond
stack bond

(a) (b)

(c) (d)

Fig. 24. Results of the numerical tests: (a) compression normal to the bed joints; (b) compression parallel to the bed joints; (c) tension

normal to the bed joints and (d) tension parallel to the bed joints.



Table 4

Stack bond masonry

x direction y direction

Elastic modulus (MPa) Ex ¼ 56000 Ey ¼ 43000
Shear modulus (MPa) Gxy ¼ 7820
Poisson’s ratio mxy ¼ 0:01
Uniaxial elastic limit in compression (MPa) fcx0 ¼ 3:5 fcy0 ¼ 2:25
Uniaxial initial tensile strength (MPa) ftx ¼ 0:09 fty ¼ 0:09
Shear strength (MPa) fs ¼ 0:07
Fracture energy (N/mm) Gfx ¼ 0:00007 Gfy ¼ 0:00007
A parameter Acx ¼ 0:4 Acy ¼ 0:2
B parameter Bcx ¼ 2:0 Bcy ¼ 1:3
Friction factor f (MPa) f ¼ 0:65

Material’s parameters for the macro-model.

Table 5

Running bond masonry

x direction y direction

Elastic modulus (MPa) Ex ¼ 111000 Ey ¼ 43000
Shear modulus (MPa) Gxy ¼ 8615
Poisson’s ratio mxy ¼ 0:02
Uniaxial elastic limit in compression (MPa) fcx0 ¼ 2:85 fcy0 ¼ 2:25
Uniaxial initial tensile strength (MPa) ftx ¼ 0:11 fty ¼ 0:1
Shear strength fs ¼ 0:08
Fracture energy (N/mm) Gfx ¼ 0:00025 Gfy ¼ 0:00005
A parameter Acx ¼ 0:28 Acy ¼ 0:2
B parameter Bcx ¼ 1:5 Bcy ¼ 1:3
Friction factor f (MPa) f ¼ 0:75

Material’s parameters for the macro-model.
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Fig. 25. Results of the numerical tests without ‘‘initial’’ precompression. s–c curves and r–c for the: (a) stack bond masonry and
(b) running bond masonry.
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Figs. 25–27, show the results of the macro-modelling both in terms of s–c curves and of r–c curves,
respectively for the stack bond and the running bond masonry panels. In the same figures, the curves

obtained with micro-modelling, i.e. Figs. 21 and 22, have been reproposed, in order to allow a more

comprehensive explanation and presentation of the analyses results.
As previously stated within the framework of micro-modelling, it can be observed that in the non-linear

field the increase of shear strain is accompanied by an increase of the precompression. It is worth recalling
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Fig. 26. Results of the numerical tests with ‘‘initial’’ precompression r ¼ 1 MPa. s–c curves and r–c for the: (a) stack bond masonry
and (b) running bond masonry.
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Fig. 27. Results of the numerical tests with ‘‘initial’’ precompression r ¼ 2 MPa. s–c curves and r–c for the: (a) stack bond masonry
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that such an effect can justify the same response that all the panels show for high shear strain, independently

from the type of texture and the ‘‘initial’’ precompression level.

A good impression about the adequacy of the adopted orthotropic constitutive law to model masonry is

obtained. Actually, with a single set of material parameters, the model reveals to be able to reproduce in a
satisfactory way the shear behaviour of the panels both in the linear and in the non-linear field, also by

gathering the effects of the masonry texture.
5. Conclusion

The shear behaviour of masonry panels has been analysed both by means of micro- and macro-finite

element modelling. The effect of the texture (namely stack bond or running bond) and of an applied

external precompression has been investigated.

In the first part the micro-modelling has been applied. First, a simple linear analysis is performed and the

numerical results for the stack bond and running bond masonry are compared with those achieved by

applying the homogenization theory, and satisfactory agreement has been found. Subsequently an isotropic
damage model, which has been developed and validated in previous works, has been used in order to

simulate the non-linear behaviour of masonry. In such a way the shear response of masonry besides the

elastic range has been investigated. It is worth noting that the analysis of the non-linear response of ma-

sonry is quite difficult to gain by using the homogenization technique, whereas the employment of

experimental tests requires high costs and very sophisticated experimental technique, e.g. due to the brit-

tleness of the sample.

Such tests demonstrate the capability of the model to follow the evolution of mechanical response of

masonry panels, both in linear and non-linear range, according to the intuitive results of the rigid blocks
mechanical model, e.g. the effect of the texture in the stiffness and strength of shear stressed masonry, as

well as the influence of an applied precompression.

In the second part of the paper an orthotropic damage model, specifically developed by the authors for

analysing masonry structures, has been used. A fully characterisation of the macro-model, which takes into

account both the effect of the texture and precompression, has been achieved by using the micro-modelling

approach. The obtained results have demonstrated the ability of the macro-model of reproducing the global

behaviour, as well as the failure modes of shear stressed masonry panel.

Such a result is very interesting for the practical application, since in this field the micro-modelling
procedure is rarely applied because of the intensive computational effort its high accuracy required, and the

macro-modelling procedure is the only effective option.

In this paper the use of the micro-modelling technique to determine the parameters necessary to calibrate

a macro-model is shown and the effectiveness of the macro-model to capture the global shear behaviour of

masonry is evidenced.
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